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Many natural, complex systems are remarkably stable thanks to
an absence of feedback acting on their elements. When described
as networks these exhibit few or no cycles, and associated matri-
ces have small leading eigenvalues. It has been suggested that
this architecture can confer advantages to the system as a whole,
such as “qualitative stability,” but this observation does not in
itself explain how a loopless structure might arise. We show here
that the number of feedback loops in a network, as well as the
eigenvalues of associated matrices, is determined by a structural
property called trophic coherence, a measure of how neatly nodes
fall into distinct levels. Our theory correctly classifies a variety
of networks—including those derived from genes, metabolites,
species, neurons, words, computers, and trading nations—into
two distinct regimes of high and low feedback and provides a null
model to gauge the significance of related magnitudes. Because
trophic coherence suppresses feedback, whereas an absence of
feedback alone does not lead to coherence, our work suggests
that the reasons for “looplessness” in nature should be sought in
coherence-inducing mechanisms.
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Feedback is a fundamental process in dynamical systems that
occurs when the output of an element is coupled to its input.

In complex systems this coupling can happen via feedback loops
(or cycles) involving many elements, and hence the number and
structure of such loops often determine important properties of
the system as a whole (1). In systems that can be represented
as graphs, or networks, the combined effects of feedback loops
are described by the spectrum of eigenvalues of the adjacency
matrix (the matrix of ones and zeros representing the existence
or absence of edges between nodes) (2, 3). These eigenvalues
can be related to fundamental questions regarding both struc-
ture (4, 5) and dynamical processes—including percolation (6),
stability of dynamical elements (7), diffusion (8), or synchroniza-
tion of coupled oscillators (2). Feedback loops also play a role in
the behavior of many specific systems, such as robustness in gene
regulatory networks (9), short-term memory in neural networks
(10), or systemic risk in financial networks (11).

It has been observed that many biologically derived networks,
such as food webs (12, 13) and gene transcription networks (14),
have far fewer feedback loops than would be randomly expected,
or even none at all. Given that acyclicity is the main requirement
for being “qualitatively stable,” or stable regardless of the details
of dynamics (1), one might suppose that this “loopless” architec-
ture is an adaptation for stability or some other functional advan-
tage. However, in some cases it is not clear what the optimization
mechanism behind loop suppression might be. In an ecosystem,
for instance, how would a feedback cycle be eliminated if it hap-
pened to benefit the particular organisms involved?

It has recently been shown that the high linear stability of food
webs is determined mainly by a structural feature called “trophic
coherence,” a measure of how neatly nodes fall into distinct lev-
els (15). Trophic coherence, moreover, has been found to play
an important role in other structural and dynamical properties
of networks (16, 17). To investigate the relationship between

trophic coherence and feedback, we here define the “coherence
ensemble” of graphs and obtain expressions for various magni-
tudes relating to the cycle structure and spectrum of eigenvalues
of coherent but otherwise random networks. We find that the
number of cycles of length ν in a network can either grow or
decay exponentially with ν, according to a “loop exponent,” τ ,
which is a function of trophic coherence. A corollary is that the
expectation for the leading eigenvalue is λ1 = eτ . Thus, depend-
ing on the sign of τ and hence on trophic coherence, a network
can belong either to a “loopful” regime characterized by many
cycles and high leading eigenvalues or a loopless one in which
cycles become scarcer with length, and all eigenvalues have real
parts close to zero. In the loopless regime, the probability of
drawing a directed acyclic graph tends to one with decreasing τ .
We analyze a collection of empirically derived networks of sev-
eral kinds and find that they conform to our theoretical predic-
tions, with those networks with negative loop exponents display-
ing very few or no cycles. The observation of scarcity of feedback
in certain natural systems is therefore unsurprising, given their
trophic coherence.

Our work also suggests the question of what mechanisms
explain trophic coherence. In the case of food webs, there are
probably evolutionary pressures leading predators to special-
ize on prey on a narrow range of trophic levels (15). However,
further research is needed to reveal other coherence-inducing
mechanisms.

Results
The results we present here are for graph ensembles; that is, we
make statements about expected values or probability distribu-
tions over the sets of all possible graphs that meet certain
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constraints. As we shall see, these results can shed light on the
relationships between the structural features of many real-world
networks, to the extent that they can be regarded as random
draws from a particular ensemble. Paul Erdős and Alfred Rényi
pioneered this approach to graph theory with their analysis of
the ensemble of all graphs with a given number of nodes N
and edges L (18). The Erdős–Rényi ensemble has two regimes,
one for L>N , in which almost all graphs will include a giant
connected component, and another at L<N , in which no
component will have more than O(lnN ) nodes. Sometimes
other characteristics are important. For example, whereas node
degrees (i.e., numbers of neighbors) in the Erdős–Rényi ensem-
ble are Poisson-distributed, real networks often have heavy-
tailed degree distributions—a property that affects many other
topological features (19). Such systems might thus be better
studied by means of the configuration ensemble, the set of all
graphs with not only given N and L but also a given degree
sequence (20).

In the same spirit, we here define the coherence ensemble as
the set of directed graphs with a given number of nodes and
degree sequence, plus a specified trophic coherence. We go on to
show that in this ensemble there are also two regimes, depending
on a single parameter, τ , called the loop exponent:

τ = lnα+
1

2q̃2
− 1

2q2
, [1]

where the branching factor α depends on the degree sequence,
and q and q̃ capture the trophic coherence of a given network
and that of its random expectation, respectively. The coherence
ensemble expectations for magnitudes such as the number of
cycles of given length, or the leading eigenvalue, depend on τ
exponentially. Therefore, as we shall go on to show, the sign of τ
determines whether a network belongs to the loopless (τ < 0) or
the loopful (τ > 0) regimes.

Definitions. Consider the directed, unweighted graph given by
the N ×N adjacency matrix A=(aij ), which has L=

∑
ij aij

directed edges. The in and out degrees of node i are k in
i =∑

j aij and kx i
out =

∑
j aji , respectively, and the mean degree

is 〈k〉=L/N (we shall use the notation 〈·〉 to refer to aver-
ages over nodes in a given graph, as opposed to ensemble aver-
ages). Note that the mean degree can be regarded as either the
mean in degree or the mean out degree, because these coincide:
〈k〉=N−1∑

i k
in
i =N−1∑

i k
out
i . An important magnitude that

depends only on degrees is the branching factor:

α =
〈k inkout〉
〈k〉 . [2]

Note that this magnitude, which together with trophic coher-
ence determines the loop exponent τ , only depends on the mean
degree 〈k〉 and the correlations between in and out degrees, and
not on other aspects of the degree distributions.

The eigenspectrum of A is {λi}. The trace of the n-th power of
any square matrix A can be expressed in terms of its eigenvalues
as Tr(An)=

∑
i λ

n
i (21). Therefore, the distribution of eigenval-

ues, p(λ), is related to powers of A via its moments:

〈λν〉 = 1

N
Tr(Aν). [3]

Because A is not, in general, symmetric, its eigenvalues will be
complex. The trace of A is real and invariant with respect to a
change of basis, so the eigenvalues of A will always be distributed
symmetrically around the real axis (21). Of particular interest is
the eigenvalue with the largest real part, λ1—usually referred to
as A’s leading eigenvalue.

A “basal node” is one with in degree equal to zero. If a graph
has at least one basal node (our assumption throughout), and

every node belongs to at least one directed path that includes a
basal node, we can define the trophic level of each node i as

si = 1 +
1

k in
i

∑
j

aij sj . [4]

With no loss of generality for subsequent results, we define the
trophic level of basal nodes as si =1 (∀i such that k in

i =0)
(22). This is the convention in ecology, where the trophic level
of a species informs as to its ecological function: Typically,
plants have s =1, herbivores s =2, and omnivores and carni-
vores s > 2.* Note that Eq. 4 is a system of linear equations that
can be solved whenever every node is on a path that begins at a
basal node (15). Hence, despite the recurrent nature of this def-
inition of trophic levels, the presence of cycles does not pose a
problem.

In ref. 15 we defined the “trophic difference” associated to
each edge: xij = si − sj . The distribution of trophic differences
over edges, p(x ), has mean L−1∑

ij aij xij =1 by definition,† and
we can measure the graph’s trophic coherence with its SD:

q =

√
1

L

∑
ij

aij x2
ij − 1. [5]

A graph will be more trophically coherent the closer q is to zero,
so we refer to q as an “incoherence parameter.” Maximal coher-
ence, q =0, corresponds to a “layered” network in which every
node has an integer trophic level, and, as q increases, the further
the system departs from this ordered configuration (15, 16).

The number of directed paths (henceforth “paths”) of length ν
in A is nν =

∑
ij (A

ν)ij . The number of directed cycles (hence-
forth “cycles”) of length ν is mν =Tr(Aν), which, according to
Eq. 3 can be expressed as mν =N 〈λν〉. (Note that we are not
referring here to simple paths and simple cycles, in which no
node can be repeated.) This definition of mν counts every unique
cycle ν times, so the number of unique cycles will be mu

ν =mν/ν.
The “directed configuration ensemble” is the set of all pos-

sible graphs with given in- and out-degree sequences (24). If
the number of basal edges connected to basal nodes in a graph
drawn from this ensemble is LB , then for any node i the expected
proportion of in neighbors connected to a basal node will
be k in

i LB/L. To obtain several expectations related to trophic
coherence exactly we define a modified version of this ensem-
ble called the “basal ensemble,” which is the subset of graphs
from the directed configuration ensemble that satisfy the con-
straint that the proportion of neighbors connected to basal nodes
is exactly k in

i LB/L for every node i . It is straightforward to deter-
mine that in this ensemble the expectations for the trophic coher-
ence and for the branching factor are given, respectively, by

q̃ =

√
L

LB
− 1 [6]

and

α̃ =
L− LB

N − B
[7]

(where we use the notation E(z )= z̃ to refer to the expecta-
tion of magnitude z in the basal ensemble). The full derivation

∗Eq. 4 is similar to the definition of the PageRank algorithm used by the search engine
Google (23). The main difference is that the sum in Eq. 4 is normalized by kin

i , whereas

PageRank divides each term in the sum by kout
j . Also, the small “teleportation” additive

term that PageRank includes to avoid problems with cycles is here the “+1” term that
induces the hierarchy of trophic levels. Both measures are related to diffusion processes,
but whereas PageRank provides the probability of a node’s being reached by a “random
surfer” (a random walker with some chance of teleportation), Eq. 4 provides a measure
of how far the biomass arriving at a given node has traveled from the basal nodes.
†This can be easily seen by noting that, for any node i, the average difference over its

incoming edges is
∑

ij aij(si − sj)/kin
i = 1.
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of these results can be found in SI Appendix. In the limit N →∞,
with L/N →∞, expectations in the basal ensemble and the
directed configuration ensemble converge. For finite graphs, we
show numerically in SI Appendix that expectations in the two
ensembles are close. Eqs. 6 and 7 can therefore be considered
reasonable null expectations for real networks given only N , L,
B and LB , that is, in the absence of information regarding in-
and out-degree correlations or trophic coherence.

The Coherence Ensemble. Let us now consider the ensemble of
directed graphs that not only have given in- and out-degree dis-
tributions (as in the directed configuration ensemble) but also
given trophic coherence. We shall refer to this as the “coherence
ensemble” and use the notation E(z ) = z for the expected val-
ues of quantities z in this ensemble. For networks in the coher-
ence ensemble, the probability of a randomly chosen path of
length ν’s being a cycle can be obtained by considering a ran-
dom walk along the edges of the graph and computing the prob-
ability that it returns to the initial node after ν hops. This con-
straint implies that the sum of the trophic differences xk over
the k =1, ...ν edges involved, S =

∑
k xk , must be zero. Let us

approximate the differences xk as independent random variables
drawn from the trophic difference distribution p(x ). According
to the central limit theorem, the distribution p(S) will tend, with
increasing ν, to a Gaussian with mean ν〈x 〉= ν and variance νq2.
Because cycles are paths that satisfy S =0, the expected propor-
tion of paths of length ν that are cycles, cν , will be proportional
to p(S =0). That is,

cν = Bν
1√
νq

exp

(
− ν

2q2

)
. [8]

Not all of the paths satisfying S =0 will return to the initial node,
and this effect is accounted for by the factor Bν . We can obtain
Bν by particularizing for the basal ensemble case, for which q
is given by Eq. 6, and cν = α̃/L (SI Appendix). Inserting these
values into Eq. 8, we have

Bν =
α̃

L

√
νq̃ exp

(
ν

2q̃2

)
. [9]

Therefore, an approximate expression for cν is

cν =
α̃

L

q̃

q
exp

[
ν

2

(
1

q̃2
− 1

q2

)]
. [10]

The expected proportion of paths of size ν that are cycles can
thus either decrease or increase exponentially with ν, depend-
ing on whether a particular graph is more or less trophically
coherent than the null expectation given its degree sequence. Eq.
10 was obtained using the central limit theorem and so should
only be valid for moderately large ν. However, if the distribution
of differences, p(x ), is approximately normal, it will be a good
approximation also at low values of ν. We have also assumed the
trophic differences of each path to be independent random vari-
ables drawn from p(x ), an approximation that will hold as long as
there are no significant correlations between these differences.

Let us now assume that the total number of paths in the coher-
ence ensemble is given approximately by nν ' Lαν−1, as in
the basal and the directed configuration ensembles—that is, irre-
spective of q (SI Appendix). This is a reasonable assumption, at
least for low ν, because α is the key element determining the
number of ways a set of edges can be concatenated. (For finite
N , the approximation may break down at high ν and low q ,
because the maximum path length will be shorter in highly coher-
ent graphs than in random ones.) Combining this with Eq. 10 we
obtain the expected number of cycles of length ν:

mν =
α̃q̃

αq
eτν , [11]

where the “loop exponent” τ has already been supplied in Eq. 1.
The term 1/q̃2− 1/q2 in Eq. 1 will be negative for networks that
are more coherent than the random expectation (q < q̃) and pos-
itive for those that are less so, whereas the sign of lnα depends
on whether α is greater or less than 1. Eq. 11 implies that the
expected number of cycles of length ν in a graph can either grow
exponentially with ν, when τ > 0, or decrease exponentially, if
τ < 0. Thus, which of these two regimes a given graph finds itself
in is determined by the correlation between in and out degrees,
α= 〈k inkout〉/〈k〉; the proportion of edges that connect to basal
nodes, LB/L (via q̃ =

√
L/LB − 1); and the trophic coherence,

given by q . Note that, as mentioned above, the definition of mν

counts each cycle ν times, so the expected number of unique
cycles is

mu
ν =

α̃q̃

αq

eτν

ν
. [12]

The number of cycles is related to the eigenspectrum of the
adjacency matrix through Eq. 3. Therefore, from Eq. 11 we have
that the expected value of the ν-th moment of the distribution of
eigenvalues is

〈λν〉 = 1

N

∑
i

λi
ν
=

1

N

α̃q̃

αq
eτν . [13]

We can use this relation to obtain, for the coherence ensemble,
the expected value of the leading eigenvalue by considering the
limit of large ν:

lim
ν→+∞

(∑
i

λi
ν

) 1
ν

= λ1 = eτ . [14]

The expressions for the configuration ensemble can be recov-
ered by taking q = q̃ , which, according to Eq. 1, implies τ = lnα.
Thus, the leading eigenvalue in the directed configuration
ensemble is λ̃1 =α= 〈k inkout〉/〈k〉. If the graph were sym-
metric (k in

i = kout
i = ki , ∀i), we would have λ̃Sym

1 = 〈k2〉/〈k〉,
whereas for the Erdős–Rényi ensemble we obtain λ̃ER

1 =1+ 〈k〉.
These particular cases are in agreement with previous mean-field
results for these ensembles (25, 26). The expected distribution
of eigenvalues is entirely defined by its full set of moments, as
given by Eq. 13. For instance, the moment-generating function
for graphs with given τ is

M λ(t)=

∞∑
ν=0

tν

ν!
〈λν〉 =

(
1− 1

N

α̃q̃

αq

)
+

1

N

α̃q̃

αq
exp (teτ) . [15]

Empirical Networks. We have obtained the adjacency matrices
of 62 directed networks from various sources. Several details
of each, including references, are listed in SI Appendix, Tables
S1–S4. There are three broad classes of biologically derived
network in our dataset: food webs, gene regulatory networks,
and metabolic networks. We also include a neural network, and
several man-made networks: two of international trade, a P2P
file-sharing network, and a network of concatenated English
words. In all cases we have removed self-edges if present, mainly
because these are not reported for many of the networks, and
the nature of self-interaction is often different from that occur-
ring between elements. However, in SI Appendix we also analyze
the same networks while conserving self-edges when reported,
and the results do not differ significantly. Fig. 1 displays the
leading eigenvalues, λ1, against τ for the 62 networks, with
different classes of network identified by the symbols, as indi-
cated. The coherence ensemble expected value given by Eq. 1,
shown with a line, provides a good estimate of almost all of
the empirical values. The inset shows the positive quadrant on
a semilog scale. Of the 62 networks in our dataset, 36 have
τ < 0 and 26 have τ > 0. The mean values of λ1 for these are,

5620 | www.pnas.org/cgi/doi/10.1073/pnas.1613786114 Johnson and Jones
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Fig. 1. Loop exponents τ are informative of leading eigenvalues for a vari-
ety of empirical networks. Here we plot leading eigenvalues λ1 of several
directed networks, against τ as given by Eq. 1; symbols indicate graph data
derived from food webs (green down-pointing triangles), gene regulatory
networks (dark blue diamonds), metabolic networks (burgundy circles), a
neural network (purple square), and other miscellaneous networks (light
blue upward-pointing triangles). The line shows expected leading eigen-
value λ1 in the coherence ensemble, as given by Eq. 14. (Inset) Semilog
version of the positive quadrant of the main panel (Pearson’s correlation
coefficient: r2 = 0.87). For these results, self-edges were removed from the
networks; a similar figure in which self-edges are included can be found in
SI Appendix. Details for each network, including references, are listed in the
tables of SI Appendix.

respectively, λ1(τ < 0)=0.22± 0.54 and λ1(τ > 0)=6.1± 7.4.
In other words, the two regimes are separated by an order of
magnitude in the leading eigenvalue.

Table 1 shows the mean and SD of several magnitudes for the
three main classes of biologically derived network in our dataset.
The first three rows are for the ratios of measured values to
the basal ensemble expectations. The graphs corresponding to
food webs are significantly coherent (q/q̃ < 1) and have slightly
lower mean trophic levels than the expectation (〈s〉/s̃ . 1).
The networks derived from gene regulation have coherence and
mean trophic levels that are very close to their expected val-
ues. Meanwhile, the networks linked to metabolism are signif-
icantly incoherent (q/q̃ > 1) and have mean trophic levels that
are higher than expected (〈s〉/s̃ > 1). The measured values of
α are in all three classes slightly higher than the expectation,
but in the cases of food webs and gene regulatory networks the
difference is within one SD. However, the metabolism-related
networks display marked positive correlations between in and
out degrees (α/α̃> 1). The fifth row shows the proportion of
networks in each class that have negative τ . For the food web
and gene regulatory network data, it is 74 and 63%, respectively,
whereas the metabolism-related networks are all in the positive
τ regime. This leads to average leading eigenvalues, shown in
the fourth row, that are much greater for metabolic network
data than for food webs or gene regulatory-related networks.
The sixth row gives the proportion of networks in each class
that are acyclic, a feature we discuss in the next section. In SI
Appendix we show an example of each kind of network to illus-
trate the wide variety of trophic structures found among natural
systems.

Directed Acyclic Graphs. Let us consider the probability that a
graph randomly chosen from the coherence ensemble will have
exactly mν cycles of length ν. We shall assume that each path is
an independent random event with two possible outcomes: With

probability cν it is a cycle, whereas with 1 − cν it is not. The
number of cycles mν will therefore be binomially distributed:

p(mν) =

(
ñν
mν

)
cmν
ν (1− cν)

ñν−mν . [16]

We can use this distribution to obtain the probability that a
network from the coherence ensemble would have no directed
cycles of length greater or equal to n:

Pn =

∞∏
ν=n

p(mν = 0). [17]

For instance, the probability that a network drawn randomly
from this ensemble would be acyclic is

Pacyclic =

∞∏
ν=2

p(mν = 0) [18]

=

∞∏
ν=2

{
1− α̃

L

q̃

q
exp

[
ν

2

(
1

q̃2
− 1

q2

)]}Lαν−1

.

Taking logarithms and considering graphs with sufficiently
negative τ that we can use the approximation ln(1 − x ) ' −x ,
we have

lnPacyclic ' −
α̃q̃

αq

∞∑
ν=1

eτν ; [19]

and, after performing the sum and some algebra,

Pacyclic ' exp

[
− α̃q̃
αq

1

(e−τ − 1)

]
. [20]

Therefore, as τ → −∞, networks are almost always acyclic. We
note that these sums include small values of ν for which results
are only approximate unless the distribution of trophic differ-
ences, p(x ), is Gaussian.

Fig. 2 is a scatter plot of our set of empirical networks accord-
ing to the terms in Eq. 1: 1/q2 − 1/q̃2 and lnα. Each network
is represented with either a triangle or a circle depending on
whether it has cycles or not, respectively. The curve τ =0 sep-
arates the two regimes, and it is clear that whereas almost all of
the networks in the positive τ regime have cycles (the exceptions
being two food webs), as one moves into the negative τ regime
most of the examples are acyclic. The inset shows the probabil-
ity of a network randomly drawn from the coherence ensemble
being acyclic, as given by Eq. 20 and indicated in the caption.
One can compute, for each empirical network, the probability
that it is acyclic according to Eq. 20. Thus, given only a network’s
degree sequence and trophic coherence, we would expect it to be
acyclic if Pacyclic > 0.5 (note that a network might be in the τ < 0
regime yet still be predicted to have cycles by this decision rule).
We find that, out of the 62 networks, eight are incorrectly classi-
fied: Seven food webs are acyclic despite being predicted to have
cycles, and one gene regulatory network would be expected (by a

Table 1. Mean values and SD of the ratios q/q̃, 〈s〉/s̃, and α/α̃,
and of the leading eigenvalue λ1, for three classes of biologically
derived networks and fractions of these networks to have
τ < 0, and to be acyclic, of the total in our dataset

Quantity Food webs Genetic Metabolic

q/q̃ 0.44± 0.17 0.99± 0.05 1.81± 0.11
〈s〉/s̃ 0.88± 0.18 1.00± 0.001 2.05± 0.01
α/α̃ 1.02± 0.23 1.19± 0.34 3.98± 1.04
λ1 1.54± 4.09 1.36± 0.75 7.36± 1.20
τ < 0 31/42 5/8 0/7
Acyclic 31/42 1/8 0/7
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Fig. 2. The components of the loop exponent τ , coherence vs. in-degree-
out-degree correlations, are predictive of whether empirical networks will
have cycles. Here we show a scatter plot of several networks according to
1/q2 − 1/q̃2 and lnα, the two terms in Eq. 1. Blue circles: networks with
no cycles. Burgundy triangles: networks with at least one cycle. The τ = 0
line is shown with a dashed line (the negative τ regime falls above the line).
Details for each network, including references, are listed in the tables of SI
Appendix. (Inset) Probabilities of networks in the coherence ensemble being
acyclic, according to Eq. 20, as a function of 1/q2−1/q̃2. Solid line: L/LB = 10
and α= 1; dashed line: L/LB = 100 and α= 1; dotted line: L/LB = 100
and α= 2.

small margin) to be acyclic but is not. The prediction is therefore
accurate in 87% of instances.

Discussion
We have shown that a directed network can belong to either of
two regimes characterized by fundamentally different cycle struc-
tures, depending on the sign of a single parameter, τ , which is
a function of the trophic coherence and the branching factor,
as given by Eq. 1. Because the expected number of cycles of
length ν is proportional to eτν , positive τ implies an exponen-
tially growing number of cycles with length, whereas for negative
τ the probability of finding cycles is vanishing. This, in turn, has
a crucial effect on the spectral properties of graphs: In partic-
ular, the expected value of the leading eigenvalue of the adja-
cency matrix is λ1 = eτ . A corollary is that graphs drawn ran-
domly from the negative τ regime have a high probability of
being directed acyclic graphs, the main requisite for qualitative
stability (1).

Our results provide expected values for what we have called
the coherence ensemble—the set of directed graphs with a given
degree sequence and trophic coherence—and do not, therefore,
place bounds on the possible values a given network can exhibit.
However, analysis of a set of empirically derived networks of var-
ious kinds shows that in most cases these expected values are very
good approximations to the ones measured, suggesting that the
coherence ensemble may be an appropriate null model to use in
many cases. We should note also that we have focused on binary
networks (those with adjacency matrices of only ones and zeros).
Although some of the results could be extended to weighted net-
works in a straightforward way, it is not so obvious how concepts
such as trophic coherence should be understood when a distinc-
tion between excitatory and inhibitory interactions is made. We
leave such questions for future work.

The fact that many biologically derived networks have surpris-
ingly few feedback loops has recently been attributed to con-
siderations of robustness (14), stability (13), and to an “inher-
ent directionality” (27). Our results are compatible with the

latter, because network directionality would ensue from trophic
coherence (that is, because the distribution of differences p(x )
is centered at 1 and has variance q2, the expected number of
edges with x < 0 is L

∫ 0

−∞p(x )dx , a monotonically increasing
function of q). However, neither a suppression of cycles nor an
imposed directionality will in itself induce trophic coherence, as
can be easily seen in the case of the “cascade model” (28). In
this network assembly model there is a strict hierarchy of nodes;
directed edges are placed at random with the sole constraint
that the out node must be below the in node in the hierarchy,
thus emulating the situation in many food webs where preda-
tors tend to be larger than their prey. Such networks are by
construction acyclic and directional, yet they do not exhibit sig-
nificant trophic coherence (15). However, our analysis indicates
that any network formation processes that tended to induce a
certain trophic coherence would confer the properties of a low
or negative τ on a system, without necessarily being the result
of an optimization for low feedback. For example, in ecosys-
tems many features of species, such as body size and metabolic
rate, are related to trophic levels. Because predators often spe-
cialize in consuming prey with specific characteristics, they nat-
urally focus on relatively narrow trophic ranges, a mechanism
that could lead to networks that are more coherent than the
random expectation. This idea is borne out by generative net-
work models that capture this effect—namely, the “preferen-
tial preying model” presented in ref. 15 (which produces acyclic
graphs with tunable trophic coherence) and an extension of this
model studied in ref. 16 (which can set the trophic coherence
of graphs with cycles). However, relatively little is yet known
about the mechanisms that might lead to trophic coherence more
generally.

Although we have argued here that looplessness should be
regarded as an effect of trophic coherence, this naturally moves
the challenge to establishing the origins of trophic coherence.
Further research is needed to address this issue, possibly involv-
ing the relation between trophic levels and the functional roles
of nodes. This view has interesting parallels with recent work
on node roles in generic directed networks, based on topologi-
cal similarity, which when applied to food webs reveals trophic
structure (29, 30). Functional groups have also been uncovered
in ecosystems using stochastic block models, which can take non-
trophic interactions into account (31, 32).

A relation between node function and trophic level may
exist in systems other than ecological ones. For instance, in
the word adjacency network of the children’s book Green Eggs
and Ham, by Dr. Seuss, we find that the mean trophic level
of common nouns is snoun =1.4 ± 1.2, whereas that of verbs
is sverb =7.0 ± 2.7 (SI Appendix, Fig. S4). This shows that in
networks where node function is encoded in trophic levels any
mechanism whereby edges tended to occur between nodes with
specific functions might develop nontrivial coherence (or inco-
herence). More broadly, it also suggests that the trophic struc-
ture of directed networks may provide insights into their func-
tion and dynamics. Classifying nodes by trophic level, as has
long been standard in ecology, might also tell us something
about the functions of, say, genes, metabolites, neurons, eco-
nomic agents, or words in unknown languages. In view of these
considerations, we believe that further exploration of the trophic
structure of networks, and its relation to function and dynam-
ics, will prove a fruitful avenue for learning about many complex
systems.
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determines food-web stability. Proc Natl Acad Sci USA 111:17923–17928.
16. Klaise J, Johnson S (2016) From neurons to epidemics: How trophic coherence affects

spreading processes. Chaos 26:065310.
17. Domı́nguez-Garcı́a V, Johnson S, Muñoz MA (2016) Intervality and coherence in com-

plex networks. Chaos 26:065308.
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